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Summary. — Some remarks are made concerningkvé‘mrious aspects of the
~ analysis of resonances produced in multi-particle final states resulting
- from high-energy collisions. The ghape and position of a resonance are

discussed by means of the connection between production cross-sections .

for stable and unstable particles, and a numerical example of N°* ag seen

in KN — KN* at different energies is given. The relation between the

present description of the resonant effects and others (Watson’s final-
state interaction formula and the one-meson-exchange model of Chew
and Low) is examined. Off-the-miass-shell corrections to the one-meson-
- exchange  model are obtained in a relatively simple way. The bearing -
~of the decay angular correlations on the production mechanism is explored ;
"co-ordinate axes appropriate for the peripheral model are specified; the
" equivalence of the azimuthal angular distribution and the Treiman-

“Yang distribution is established. Angular correlations are given for the

decay of boson resonances (J=1,2) resulting from definite spin and

parity states in the {-channel. Some remarks are made about the inclusion
of nonresonant contributions when there is a mixture of pseudoscala,r
-~ and vector exchange

I Introduction.

-~ In the quantitative study of resonant states produced in fundamental-

partlcle interactions one is interested in the detailed properties of the states |

themselves (mass, width, isospin, decay modes, spin, parity, etc.), and also in

- the production mechanisms. For a resonance which appears in elastic scattering,

correlation of the data on scattering and associated reaction channels can
determine the properties of the resonance in a manner familiar in low-energy

(*) Ford Foundation Fellow, on’ sabbatical leave from the Umversﬁ;y of Illinois,
Urba,na for the academlc year 1963-64.
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2 REMARKS ON THE PHENOMENOLOGICAL 'ANALYSiS»,OF RESQNANCES i ;‘[1645] B

nuclear physms A classw example of this type of a11a1y31s is the elucldatlon*‘

~ of the nature of the Y, (1520) by Warson, FERrRO-LUZzI, and TRIPP (). I a,', e
resonance is produced as one of the reaction products in a multi-particle ﬁna,l ’

‘state, its mass and width can be detelmmed from an invariant mass plot for

. its decay ploducts Additional 1nf01mat1on can be obtained from the angular )

- correlations of decay. The oomplemty of the distribution (2), and more ela-

borate analyses in terms of various moments (%), can be used for spm and parity

- .determination. For known. spms the decay eouelatlons throw hght on the"~
~production mechamsm (4).

' ‘ In the present paper we wish to make some rather simple 1emarks concern-
ing @) the shape and position of resonances produced in inelastic collisions,
and b) the decay angular correlations. Most of the results are undoubtedly
known to many workers in the field, but a,pparently not to all.

" The reasons for considering the shape and position of resonances are two- 7
fold. On the experimental side, there is the problem of knowing what is the‘l'

- most reasonable resonant shape to employ in order to make & precision fit to a
Tesonance, or in more specific and dramatic terms, of understandmg Why
the N, appears at 1211 MeV in a producmon reaction (5), at 1225 MeV in

elastic scattermg, and at 1238 MeV in the tables of properties of fundamental . S

partlcles “On the theoretical side, there is the question of comparison of various

‘models for productlon with experiment. In some calculations the resonant
state is treated as a stable partlcle with the a,pproprmte mternal ‘quantum
numbers (®7); in the one-pion- -exchange model the resonant line shape is -

expressed in terms of the scattering cross- sectlon (®); some‘mmes 1esona,nt effeots :
_are mcluded as a fmal-state interaction (%1). The mterconnectlon of these
dlﬂferent theoretlcal treatments needs dlscussmn : ey

(1) M. B. XVATSON M. Ferro-LiuzzI and R. D. Tripp: Phys. Pev 131 2248 (1963)
() E. Ersner and R. G. SAcHS: Phys. Rev 72 680 (1947) C. N YANG Phys
Rev., T4, 764 (1948).

(3) Thereis an enormous hte1 ature on this subject. Some of the papers are:T. D Les

and C. N. Yaxa: Phys. Rev., 109, 1755 (1958); P. EseruARD and M. L. GooDp; Phys '

- Rev., 120, 1442 (1960); R. Garro and H. P. Stapp: Phys. Rev., 121, 1553 (1961) B

"R. H. Capps: Phys. Rev., 122, 929 (1961); N. Byers and 3. FENSTER: Phys. Rev. Lett.,
11, 52 (1963); M. PrsERIN: Phys. Rev., 129, 1864 (1963); M. ADEMOLLO and R. GATTO
Nuovo Cimento, 30, 429 (1963); Phys. Rev., 183, B 531 (1964). {

_ () K. GorrFriED and J. D. JACKSON Nuovo O'Lmento 33, 309 (1964) Phys Lett
8, 144 (1964). .

(5) E. Boupt, J. DUBOC N. H. Duoxa, P. EBERHARD R. GEORGE, V. P. HENRI,
T.Levy,J. Poyex, M. PripstEIN, J. CUSSARD and A. TRAW : Phys. Rev 133, B 220 (1964) e

() R. W. Hurr: Phys. Rev. 183, B 1078 (1964).

(") J. D. JacksoN and H. PILKUHN: Nuovo Cimento 33, 906 (1964).

() E. FerrARI and F. SELLERI: Suppl. Nuovo Cimento, 24, 453 (1962).
(°®) R. H. Darirz and D. H. MILLER: Phys. Rev. Lett., 6, 562 (1961).
(1) €. Boucmratr and G. FramanD: Nuovo. Cimenio, 28, 13 (1962).
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The remarks concelnmg the angulal ‘correlations of the decay products

-~ from o resonant state are of two kinds. The first are of a purely kinematical
“nature concerning the choice of axes and the fact that the well-known Treiman-

Yang distribution (1) is just the azimuthal angular distribution with respect

“to @ certain set of axes in the rest frame of the resonance. The second kind.
* of remark is on the: mpheatlons of the form of the decay correlations for the
el ‘ploduetlon mechanism, especially in terms of - ehannel ‘properties (appropriate

. for the peripheral model).

The purpose of the paper is to spell out in some detail various points of

' interest primarily to experimenters. There is nothing of real significance on

the theoretical side. But it is hoped that the paper will be of some value in
clarifying the phenomenological treatment of resonant states that are produced
in multi-particle reactions. Sections 9 t0 5 are devoted to the shape and position
of a resonance and the inter-relation between various theoretical descriptions,
a8 well as the example of N ploduetlon in KN — KN*. The final three Sec-

‘tions (6-8) are concerned with the decay correlations and the connection with
- the produetmn mechanism. Two appendices contain results on the energy-

dependence of resonant Wldths and a critique of the off-mass-shell correction

‘ factor ‘of Ferrari and Selleri.

2; - Connection between cross-sections for production of stable and resonant states.

- The question of the shape and position of a resonance in & production

~_reaction will be phrased in terms of the connection between the cross-sections

for the ‘production of a stable particle and
an unstable one. The two processes are in-

| R ) procy
: dicated in Fig. 1 :
S ‘ : ~ Before dlSOllSSng the eonnectlon ‘between.

. the two cross-sections we consider the phase-
space for n particles in a form appropriate for
two particles in a resonant state. .Starting

" from the standard invariant phase-space,

dzp, d®p, ... d3py

i .. dingram of (L ar, = , -
Fig. 1. - Schematic d.lagmm of (1) : f(Z:n:)““ (2E,)(2E,) ... 2B,)
production of stable particle R, and ‘

 of unstable particle R that decays 0Pt Pt Dn— P),
" into particles 1 and 2 at the '

~ vertex V. it s straightforward to show that (1) can

(1) 8. B. Tremmaw and C. N. Yane; Phys. Rev. Lett., 8, 140 (1962).
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4  REMARKS ON THE PHENOMENOLOGICAL ANALYSIS OF RESONANCES .- . [1647] ° °

be ,Wi‘itten as

. _ @BQdp, .. pa o IR
(2)- dF”“‘ff(zn)w—l)@@o)(zm)...(2En)5(Q+P3+"'+p” P)s
where
. ’ - 1 q .
3) . = 4(2n)3wd912dw

'~ ig the two-body phase space in the rest frame of particles 1 and 2. In (2) and (3), -
© Q = p,+ p. is the 3-momentum of the pair (14 2), co'is their invariant mass
(w? = — (p1+1,)?), @, is their energy (Q; = Q* + w?), while ¢ is the 3-momen-
tum of each member of the pair in their rest frame. The form of (2) is that

of (n—1)-body phase-space, with one « particle » having mass w, times the -

internal phase space (3) for two particles. :
- Let the cross-section for the production of a stable particle R, of mass o,
summed over the spin states of R,, be denoted by do,(w). This is the process

indicated in the upper diagram of Fig. 1. The cross-section for production N
of the resonant state I, integrated over all angles of decay in the rest frame of

the resonance, can be expressed in terms of do,(w) by modlfymg the calculation
to include a propagator and decay vertex amplitude V- for R, as shown in the
~ lower part of Fig. 1. The result is ' S ‘

arwe ' (w)

(o — @*)* + wﬁfz(w)] 4ot

(4) ’ do = das(a}); [

~where w, is defined as the mass of the resonance, and I'(w) is the width, defined by |

: —_3“.____1_ 712 4
® Fw) =353 2J+1Zf|? "5 4

In (5), J is the angular momentum of the resonant state, the summation is =

" over the spins of the resonance and outgoing decay particles, and the integration a0

~is over the decay angles of the two-body phase space (3). Bquation (4) has
been given previously by BErGIA, BONSIGNORI and STANGHELLINI (*?), and by /~.

BorDpES and JouveT (13).
- Several remarks should be made about (4):

(*?) 8. BERGIA, F'. BONSIGNORI and A. STANGHELLINI: Nuovo Cimento, 16, 1073 .
- (1960).

(13) G. BorpEes and B. Jouver: O.R. Acad. Sci. Paris, 257, 1007 (1963); see also
B. Jouver, J. M. Asmrox and G. BorpEms: Phys. Leit.,, 6, 273 (1963). ‘
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) Tt is vahd only it the 1esonanee is plodueed « eleanly », as 1mphed N

“fAA' f;1n Flg 1 Interference effects in ‘the final- state are 1gnored

°b) Although the a,ssumptlon of two body decay has been made in our

‘dlscussmn, (4) holds for more complicated decays prowded I'(w) is suitably
s ';f.deﬁned : : . L

c) If the resonance has alternative modes of deeay aJnd only one mode is

belng considered, the width in the numerator of (4) becomes the partial width
f01 that mode while the W1dth in the denommator is the total width.

d) For a narrow resonanee, 1ntegmt10n over the line shape in (4) yieids

the stable partlele Cross- seetlon evaluated at o ~ w,.

e) ‘Equatlon (4) eannot quite be ‘demved by perturbation theory involy--

: f,ﬁv';"ing“a; simple propagator for the resonance. The resonance must be given a
. complex mass or the propagator must be calculated more accurately (13)
'VVZBut ]ustlﬁeatlon for the denominator in (' ) is hardly necessary .

f) If the reaetlon involves the productlon of two or more resenanees,."

(4) can be generahzed by ertlng a product of resonant factors and differen-
tlals in a)z, -one for each resonanee ‘ ‘

S g) Equamon (4 ) is elosely related to, but not quite the same as, the expres-

' ‘sion of LINDENBAUM and STERNHEIMER (%), used in the Vorlyglnal_ work on the
~isobar model. These authors employed the scattering cross-section in place
~of the square-bracketed quantity in (4). For a natrow resonance there is little
. difference, but, as we will see below, for resonances such as the N (1238) the

e fiv;‘:dlfferenee may be, significant.

The elas’mc seattermg of the pair (1,2) via the resonant state gives nse to a

7 ,?'"';scatterlng cross-section of the form

.4-# C2J41 ZFZ( »)
Q (271—!— 1)(279—|—1)( ) +w§F2( )’

; Whei’ei (J1y 12) :aJ're the angular momenta of the pair (1, 2) The presence of 1™ in
' . the numerator of (6) and only I"in (4) is a result of the fact that in scattering

"~ the resonanee is formed and then decays, while in produetlon only the deea,y
’;oecnrs In produetlon the second [ is replaced by the square of a eouplmg
‘f.‘,eonsta,nt in do,(w), as we will see below. The elastic scattering (6) and pro-
' ’i,ducmon cross-section (4) can be expressed in terms of a resonant phase shift

’(14)*SA;;V#J.'LiNDENBAUM 'and R. M. STERNHEIMER: Phys. Rev., 105, 1874 (1957).'
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. 6 . REMARKS ON THE PHENOMENOLOGICAL ANALYSIS OF RESONANCES = (1649]
© 8(w), given by LR e i s

ggof(a)) :

- o tge= .
s s
.In particular, (4)‘ can be written.
. . ) i : . v : ‘ Sinz 6 i
8) - ; do =d —— dw? .
®) : 0. =00 (w) 7w, I'(w) do

This. form W111 be useful for comparison Wlth the one-meson-exchange model of

FERRARI and SELLERI (*), and the final-state interaction result of WATSON (5). S
" The shape and position of a resonance is governed mainly by the line- shape f i

~facbor in (4); although the energy variation in the stable- particle cross- sectlon;:_‘

Vdcrs( ) can enter s1gmﬁca,ntly, as we will see in an exa,mple later. If the resonance L

~is. broad the energy-dependence of the width I'(w) can cause distortion of the i

line shape, with the peak position falling below w, and the shape being skewedf
" to higher energies (*). If the two- body decay of the resonance proceeds via a;?f; i

partial wave of orbital angula1 momentum l, the width F(w) varles Wlth energy.
v::ougliqy,gbS S ‘ o e

© f f C QF(' ~Fq/q e,

sW1th this energy dependenee the shift in the peak posmoL is found from (4),
- to be : ; , St

| (10) W —Wpeare , 204~ 1 (B [ ' wp — (m3 —my)* ! ] ,
' ' ry ——’ 8  \w,/ Lws—2(m] -+ my)ws + (mi — mg)z a

‘the factor in square brackebs being w?(dg?/dw?),/g?. This factor can beee‘me} A
large for small energy release, varying mversely as the @ value if w, is near -
the two-particle threshold. Consequently there can be an appreciable d1ffe1enee

{k,between O and w, for low-lying, broad resonances. The peak of N* (1238) }
" for exa,mple, is estimated from (10) to occur roughly 23 MeV below the mags

value w,= 1238 MeV for [, =~ 125 MeV The maximum of the sea,ttermg_f.'
' cross-section (6) is also shifted, of course, by an amount gwen by (10) w1th;_},

the factor (2l+1) replaced by 2.

(15) K. M. WaTsoN: Phys Rev 88 1163 (1952

(*) There are circumstances where the peak can fall above w, for example in’ a
- partial cross- section where the total width in the denominator of (4) is essentm]lyk' et
constant but the partial width in the numerator varies rapidly Wlth ‘energy.. Such ': e

‘cases are dlscussed by 8. L. Grasmow: Phys. Lett., 2, 251 (1962)..
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lglven for oeses of mterest and also some empirical forms.

;: Resonant factor for modlfled phase-spaee ealeulatlons. Conneetlon Wlth flnal—ii o
: state mteractlon formula of. Watson. ;

'Ihe ‘pr0pe_r expression for modifying phase-space calculations to include -

tion that the (n—1) particles and the stable resonance R, are produced ac- -
D eordmg to ‘phase-gpace, the stable- -particle cross-section dey(w) will be propor-
L tional to the (n_——l) body phese space in (2), that is, the right-hand side of (2)

with f omitted. When that expression is inserted in- (4),'it is seen that (4) differs

“;f ~:from the - body phase space (1) by a factor

o T wsints
Q(wﬁ‘—;a}2)2+m§F2(co) _..: ] QF(CU-) 2

f_’_{‘IWhei’e”O’ and ' are normalization constants. In the absence of any infor-

A ma,tlon on the ploduetlon mechanism, the mass and width parameters of a_ ‘

'1esonenee appearing in the invariant-mass plot of two partleles in an n- partlele E
final state can be determined by multiplying’ the predictions of n-body phase-

space b'y mR(co Note, however, that if Paull prmclple effects are 1mportant 2
- ‘coherent superposﬂnon of -amplitudes is neeessary {(o:10),

: (pR(a)) is essenina,lly the final-state’ enhancement faetor of WATSON (15) ’
Thls can be seen immediately from (11) when we use the approx1mate energy -

i varletlon of I'(w) given by (9). Apart from slowly varying fa,etors, pr(w) is
e then proportlonel to the absolute square of ¢ sin §/g'+, the result of WATSON.
o It is this form that has’ been used by Darrrz and MItiEr (°) and BOUCHIAT
T am_d FLAMAN (2 ) Wlth a Breit-Wigner shape for the resonance. :

4 — :Shepe :end; posifion of ,N’* in’ K+p — K°n+p' ‘

As an example of the a.ppearanee of & resonance in production we oonmder_;
/the reaction K+p—>K°ﬂ: p at 1.14 GeV/c (°) and at 3.0 GeV/e (%), in which

L ;N’* (1238) is produeed The three body phese spaee is proportlonal to pKad.Q

'_"Aa (16) M FERRO LUZZI, R. GroreE, Y. GOLDSOHMIDT CreErmonT, V. P. HENRI,
T B. JONGEJANS D. Leits, G LiyNcH, F. MutLer and J. M. PERREAU: Proc. 1963 Sienna
'Intematwnal C'on]‘eq‘ence on Elementary Partwles (September 30- October 5, 1963), vol.. I, .
p 189 , , o
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;For quantltatlve ﬁttmg of data, the energy verlatlon of F( ) given by 9)
18 perhaps t0o >erude In Appendlx A some theoretical results for- F( ) are”

‘,a"resonanee,between a, pair of particles can be read off from (4 ). On the assump-. o



reasonable to employ pZ., not Py,

'8 . REMARKS ON THE PHENOMENOLOGICAL ANALYSIS OF RESONANCES 1:1‘,['1651,]._\;

i

s tlmes f, eq. (3)- Thus, in the absenoe of a model for the produemon process Wek;. g
-expect the.invariant-mass plot for the pair (D) to be’ given by the square AN

a ~ bracket in (4) times Doy 164y (g]0)pe(0)Pgs. But we have a model f.or this

. process, namely the p-exchange. model of STODOLSKY and. SAKURAT (17). In the i :
differential cross-section, in addition. to. some comphca,ted A2- dependence,.
there is.an overall factor of pl., 1nstead of the pK., of phasge space (7). “Although e ‘
for ﬁxed production angle 4 changes as the 1nvar1ant mass varies, 113 is perha,psr i

o

~ times the square bracket in (4)
' as a representation of the w'p
‘invariant-mass spectrum. Since P
- decreases with increasing w?, this
~ factor tends to push the peak of
the resonant line towa,rds lower
- values of w® and to make the
shape narrower and more symme- -
trical. Fig. 2 shows a compa- 12 13 5
*"rivson of N* resonant shapes at k i w’ (Gev)
1.14 GeV/c and 3.0 GeV/c calcu-
lated in the above manner, using

Wy = 1217 MeV 7

w, ., =1210MeV -

\l\
N
I
|
h
1

Flg Ca,lculated appearance, of the Ne* (1238) . k

~ . o =1238 Mey - it -
\\\‘ o [ R _,:"

resonance as a function of the square of the ..

Wy = 1238 MeV, I, = 140 MeV, effective mass of the ='p system in’the reac: S
“and the theoretical width formu- tion Kfp— Kor¥p at 1.14 GeV/c and 3 GreV/C & £

1a (A.4). The peak positions and E incident K+ moment‘lm‘ e
full widths at half-maximum are ' ‘ :

o, = 1210 MoV, Aw =82 MeV and w,., =1217 MeV, 4o _96 Mev Tespec-

: 'twely The resonant Shape in (4)is very snmlam to the 3 GreV/e curve, peak-
"mg at 1219 MeV with a width of 100 MeV. ‘Both curves in Fig. 2: are mﬂ :

reasonable aoeord with the respective data (5 1) and 111ustrafoe forclbly the )
‘differences between the observed position and width (o, Aw) and the theo- it
retical parameters (w,, I;). BorpEs and POYEN (8) hewe 1ecently dlscussed thlS ‘

“point for the K*p data at 1.14 GeV/c.

Tor resonances that are narrow and/or well above threshold the eﬂ:’ec’o% of’-fv' i
the energy-dependence of the width and other dynamloal factors are less than -
for the N*. The appearance of the p- meson, for example, is more or less unal-',:,‘, e
tered from a symmetrical resonance curve, with the peak shlfted downwards
~~by about 4 MeV from w,~ 750 MeV and the apparent width- about b MeV_ L

~less than Iy~ 100 MeV. For the p-meson, of course, mterference effects- seem

1mportant these distort the shape far more than the energy-dependenoe of L P

the w1dth

. (") L. STODOLSKY and J. J. SAKURAI Phys Rev. Lett 11 90 (1963) T S
(%) G. BORDES and J. POYEN: C.R. Acad. Sci. Pcms, 258 2491 (1964)
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54.;}“061‘meeﬁo'ﬁ With the eﬁe-meson-.exchangef model of Chew-Low.

_ The structure of (8) is mmllan t0 the one-meson pole contrlbumon to the
L pr oduetlon process in that sin? § can be considered as proportional to the scat-
termg Cross- -section for the pair (1,2). The presence of the scattering cross-
jsecmon at the pole was, in fact, the motivation for the original. discussion by
- CHEW and Low (1?). In the subsequent work ‘on the one-meson-exchange
et © model (%) it is assumed that the basic diagram
2 1? SR V. . shownin Fig. 3 domnates the production process
: 2 o in the region of small, but physical, momentum
~ transfers. Although not a necessary restriction on
"Flg ST exchangé ~ the model, in the applications it is usual ftrhatA
L dlagra.m for production of the - the incident particle 1’ and the exchanged meson
PLR A unstable partlcle R. -~ 2' (taken to be pseudoscalar) are the same type
' of particles as the pair (1,2). It is clear from

" '“fductlon eross seemon will be propor’mona,l to the elastic scattering cross-section

L ;(1'2'"91 2). But in the ‘physical region off-the-mass-shell effects enter: and
;,We msh to indicate to what extent (8) includes such effects and to compare it ‘

W with the 50- -called pole approximation of Ferrari and Selleri. Figure 3 represents

pair (1 2) proceeds via a resonant state, but this is the situation in most appli-
‘"ea,tlons “We will begm our discussion with the 1mpornam; examples of a vector
,‘meson (p, K*) deeaymg into two pseudoscalams and a baryonic isobar (N, YI)
‘deeaymg into a balyon and a pseudoscalar meson. The comparisons can be

”‘and the formulae of Ferrari and Selleri, but we shall give a direct argument here.
S When the upper vertex in Fig. 3 involves two pseudoscalar mesons (1', 9 )
: ’and a veetor meson (_R) the ‘stable-particle cross-section do,(w) is proportional

I e f: ]le the couphng constant for R —1’,2'. When summed OVer the vector mesons’ .

,_pola,mza,mons, das( o) will involve a faetor 'y, where py, is the magnitude of

. the 3- momentum of the incident meson 1’ in the rest frame of the resonance.
“ 'I‘he Wldth F( )Whlch appears in the denominator of (8) is proportional to

L 2Q-"/oo see Append1x A). Thus the Cross- sec’mon (8) will involve, as the factor
i from the upper vertex in Flg 3, '
v : “ .

cop—lzsinzé.

el ThlS can be"‘eo‘mpered’With thev factor from the pole approiiination of CHEW

6700 -
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' AFlg 3 that 111 the hrmt that the exchanged meson is on the mass shell the pro- . L
: '_,only a speclal one- meson-exchange diagram in which the production of the

: aecomphshed by inspection of the stable particle productlon cross-sections ) e

’fito the square of the vertex amplitude V' = g( v—Pu) & =2g(py-¢), where g - - -
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Ly

and Low (%) and'-FEgnARI.gﬁd SELLERI (é)"

w ’~3111Z )

‘ Coq(jacatt(w) oC

' . ‘The ratio of (8 ) to the pole approx1mat1on Gross- sectlon is thus, apa,rt from a‘f"j‘?‘”'
e -vertex form factor, v L :

G ph [+ m o A — my A7)
oo ¢* [0+ ma)'— ][ —m)* —m3]”

(12)

“swhere A2 is the 4-momentum transfer. In the limit A* — — m? the rlght hand 0

side of (12) is unity, but in the physmal region of 42 it is larger than one and‘f o

- increases with increasing momentum transfer. The correction factor (12) forﬂ'}i" g

vector meson production was first obtamed by SELLERI (*), using essentially :

~ the same argument.
g+

If particle 1’ is a nucleon and the resonance is a (¢) isobar, similar consi-

dera,tlons show that the ratio of (8) to the pole appromma,tmn of Ferrarl and
' Sellen is L T

(13)

N ;[(w+m)2+42 o
dgpole T (CO + ml) — m QZ ! ) ' . " .
where (p%/q®) is given by (12). SALZMAN and SALZMAN (21 cons1dered oﬁ mass-‘k-’"';’
shell effects for the N** within the framework of the statlc model and obt&med (13) .
with the first factor omitted. ' :
, For formation of a (% ) isobar with an meldent nucleon 1, the result 001-

responding to-(13) is~ - S SRR P

Qg L+ my+a)\g) T

The presence of pR/q ‘is because of the d-wave chdmcﬁer‘ of-thez_forma,ti'oﬁ
or decay. . -

Inspection of (8) and (9), as well as (12), (13), (14) leads to the 1nference

that for higher spin resonances the dominant kmema,tlc off- the mass shellk il
correcmon to the pole approx1mat10n wﬂl be : i

. . o ‘ . do. A\ et | . : “ : s ’ |

where [ is the relative orbital dngular momentum in thevforhﬁat‘ionb‘of,thé‘ reso-

(%) G. F. Capw and T. E. Low: Phys. Rev., 113, 1640 (1959).
(*) F. SELLER1: Phys. Lett., 8, 76 (1962).
o (*1) F., SALZMAN and G. SALZMAN Phys. Rev., 120 599 (1960
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'""reotly because the vertex amphtude V' of Fig. 3 will 1nvolve a product of

. frame, V! will then have a dominant factor p% (at least if the interaction is
:.’_ajssumed to be of short range) while the vertex V in the width (5) describing
its decay w111 have a eorlespondmg factor g'. For baryonice resonances the
' ~7,’~bajryon Spins introduce additional terms, but these are genera,lly slowly varymg

”_{-f?‘f"for small A2 [see (13) and (14)],

1 For N¥ production off-the-mass- _shell effects have been 1nvest1gated Wltvh;
b d1spers1on relation techniques by Irzuka and KLEIN (*) and FERRARI and

"Vn"?“‘;‘:‘,SELLERI (23) with the result that for small A*-the correction factor (12) is ob-
i tained. FERRARI ‘and SELLERI give, in addition, a more elaborate result
o WhlGh is essentwlly (13) multiplied by the square of (1 4- 3a)/(1 -+ a)?, Where

gk oc0 = (4® 4+ m? )[2my(wo—my). This additional factor falls off rapidly at large 4>

' and more than cancels the increase with /* present in (13). The validity of
- this addltlonad factor is dlscussed in Appendix B, with the eonolusmn that (13)

BT m01e or less correct as it stands. -

| ~-The correction fa,ctors (12 (15) for the pole a,pproxnna,tlon can: be gene-

(2 g, NEK —Y*—>Y=r). Then the pole appmmma,tlon is proportional to the
"_«*'rea;ohon cross-section, rather than the seattermg Cross- -section. It is straﬂght-»

forward to show that the only change in ((12) is that the masses m, and m, are

initial state (1’,2') that is off the mags-shell.
o In actual applications the off-the-mass-shell corrections to the pole a,pprox-

; 1ma,t10n are magked by additional A4* dependence not present in lowest-order

'év'ff'pertmbamon theory, and -usually expressed in terms of emplrlcal form fac-

»_Vi:w;tors (#). One can argue that, the explicit A dependenee “of (12)=(15) should

B j‘fbe retained since it is basically kinematic in origin; the form factors then repre-

: "?if',]}sent dynamical modifications of the vertices and propagator. But if the empir- |

; ";’v‘floal form factors result mainly from absolptlon effects in the- low partlal Waves,
ffthe ar oument for expholt retentlon of (12)- (15) is less oleam '

R

)

- 6 = Chome of decay axes equlvalenee of azxmuthal and Trelman-Yang angle

The angulal eorlelafmons of the deoay produets of a resonance are most
e : oonvemently conmdered in the 1est frame of the resonance. For two- -body

LM 1&u51s remarked on by SELLERI (%). RN
() J. Tizoka and A. KiRIN: Progr. Theor. Phys 25, 1017 (1961).
(e ) E fPERRARI and F. SELLERI: Nuovo Omnenun 21, 1028 (1961%
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7. ’]5.,- JAokSON,' X . A o |1 LA
o (* ) For a Tesonance formed ﬁom two spmless bosons th1s result follows A

the tensor of rank 7 deserlblng the spin of that partlele and a tensor of the - -
. same. rank made ‘up: of the 4-momenta of 1’ and 2'. In the pa,rtlole s rest

; yoo,lahzed to processes in which 1’ and 2’ of Fig. 3 are not the same as 1-and 2~~~

j'.lepla,eed by m, and m,, respectively. This elearly must be so because it is the R L



colg REMARKS" N THE PHE’NoMENoLO(}IoAL"-ANALYSIS'OF' REso‘NANo’ES :

relative to a su1table set of co- -ordinate axes. ~For w decay the normal to thez_

| deoays the dlreetlon of one of the decay partlcles deﬁnes the deca.y angles (0, @)

three-pion deoay plane: repla,oes the chreomon of one of the pa,rtlc]es in the two'~ 4
~ body decay. ‘ : : L < L sl
~ The choice of axes is motated by oonmderafmons on the probable meoha,msm,{fi'
©of produotlon For per1phera1 oolhsmns, in which the descnptlon of the pro-j g

duction process in the i-channel is assumed SR e
to be simple, there is a natural choice of z-
axis, namely the direction of the «incident
partlole » in the rest frame of the resonance.
Flgure 4 111ustrates various co-ordinate fra-
mes. The upper diagram indicates the par-
_‘tlcles mvolved while the lower three diagrams .
'f{show ‘ _tho momenta in the centre-of-mass .~

~ gystem, the rest frame of a (the «incident
~ particle»), and the rest frame of ¢ (the reso-
- E_nanoo)'. I will  be nqt‘-ed”tha’t*in the rost. . centre of rest frame rest frame

,_.frame‘ of ¢ the momenta a and ¢ are equal -~ mass . ofa. . ofc
‘and opposite. Thus the choice of the direc- ‘Pig. 4. — Kinematical diag} am‘s.g‘l”,‘,
_tlon of a as z-axis is the same as choosing the pe ypper figure defines the va- '
momentum transfer direction, a natural axis. ‘'rious momenta. The three’ lower. ...
for consideration of éxchanged.systems. The figures show the momenta in dif-
* azimuthal angle @ is specified by choosing the - ferent; I_J‘?rentz Jrames. ot ol
normal to the production pla,ne as the y-axis. = o

Before discussing some of the angular d;lstrlbutlons and thelr 1n1phoa,t10ns,ljw

we wish to make a remark conoernmg the Treiman-Yang angle (11), This. angle .
ig fefined as the angle between the plane containing the two pa,rtloles from the -
‘decay of the resonance and the productlon plane, ‘as seen in the rest frame. of;*,'_
the «incident particle » a. Trelman and Yang showed that 1sotropy in. the‘ .

d1str1but10n of this angle is consmtent with - p1on (or K- meson) exchange, al"*‘ ‘
though it does not prove it. Subsequently it has become customa,ry thait exper-'; ;
_imenters give a Treiman- Yang angular dlstrlbutlon, as well as: other -decay

correlations. 'We assert that the azimuthal angle ¢ and the Trelman -Yang’
~angle are the same, even though they . are defined in different 1eference frames,
~_and that -exhibiting both angular dlS’tI’lbllth]lS 8 redundant
‘ That something like this must be true can be seen from Fig. 4. In the rest;‘;,
frame of a, the exohanged system e and the resonance ¢ have the same momenta, L

Ife has spin zero the decay plane of ¢ must show 1ota,t10na,1 symmetry aroundj;
, the common momentum. Thig is the essence of the Trelman Yang test. Buﬁ
now congider the rest frame of c¢. Here the exchanged system e is. 1n01dentjg

~ along the z-axis (the direction of a). Again, if e has spin zero we expect rotamonal :
b symmetry in the deeay of c. 'l‘hls is 1sotropy in the ammuthal angle gv
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o JDJACKSON g
: A: dueet demonstlatlon of the equahty of @ a,nd the Trel_man Yang angle : -
: \can be: seen from Fig. 5, Where the co- -ordinate axes. in the rest frame of ¢ are )
» | shown along with the momenta of the deeayupartlcles (1,2). If a Lorentz trans-
; formafmon is made along the z-axis to reach the rest’ frame of a, the momenta of
: ~ L ~ the deeay particles (1, 2) will remain in the
i f‘sha;ded pla,ne eontammg the z-axis and their
~ common line. This then is the plane of Treiman
' and Yang, Whlle the z-z-plane is the produc—l‘ e
. tion plane. The angle between these pla,nes' ‘
is evidently ¢. , : v ‘
- There is only one point to dlseuss, namely
SR i the fact that in reachmg the rest frame of a
s Flg 5. Deca,y directions. in the’ u'we made two Lorentz tra,nsformat10ns, from " _
" rest frame of particle ¢. The plane the centre of-mass system to the rest frame
: ~ containing the z-axis (dlrectwn of of ¢ and then to the rest frame of a. Nor-
- a) and the momenta of the decay - mally orie would transform directly from the
. products, 1 and 2, is the decay . . ° G e
plane of Treiman-Yang, while the - centre of mass to the rest frame of a in order
g-z-plane is the plane of produc-f to compute ‘the. Treiman- -Yang angle. It is-
Vi‘(’)n.'_(,b is the Tre_iman-'Y ang angle. well known that these two Ways of reaehmg
S : - the rest frame of a, ‘give results dlfferlng at
. '~"',]most by a three dlmensmnal rota,tlon, in this case around the normal to the
’f'productlon plane. But a rotation of all momenta, around this normal does not- |
. change the angle between the two planes and §o the mequwalenee of the trans- | o
r_f',;forma,tlons is of no consequence ' : , "

Lo ¥-3Deeay 'ang'ular' correlafions and ex\ehanged :Syste‘ms =

&y The stlucture of the decay eonela,tlon W(O, (p s 11m1ted by the a,ngulal =

f,"imomentum J of the resonance and ‘the conservation of parity in both the

kr’jva'OdllCthn and the decay process (* ). For a resonance with J =1 decaying
711111;0 two SPmless partmles itis - S ‘ B

. (16)' B . W 10, (p i {Qoo cos? 6 —l— ou sin? 6 — 91 1 sm2 6 ©08 2(}7 —
L ‘ : _‘——\/2Regmsm26(zos<p},

h ,where O ar ATE the elements of Jthe spin density matrix of the. resonance whose
A “',f'traee (2on+ 000) is normalized “to unity. The angular distribution for a reso-
,““‘nance of arbitrary spin is given by eq. (17) of ref. (*). For a J= 2 baryon reso-

i f’nance the general strueture of W(0, ¢) is the same a,s (16), although there is a ~
rearra,ngement of terms ‘going Wlth the J ’densﬂ:y matrix. The strueture B
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= " ’V bu’.tion' results. For J=1 or J=3 this has the form (a—{—bcosZgu)

- Ttis perhaps worth-while to give a more pedestrian

14 1‘.REMARKS {o’N -THE '?ﬁENOMEﬁbLOGICAL;,ANA YSIS O ,RESTON;AVI\TCZ'ES-

of (16 )is geneml ‘the. speelﬁe produetmn mechamsm V'Wl]l determme the values
_ of the densﬂ;y matrix elements g, ... For J = 1soba1 productlon the fact that (16)\
is -the most general form possible wtlates the obselvatlon of Stodolsky a,nd_f-»:

. . Sakurai (*7) that the a,z1muthal dependence of (16) results from vector- -meson. - i, A

exchange. For hlgher spin resonanees their remark is relevant ‘but for the

| - important case of J= 3 (mdependent of ‘parity) the az1mutha.1 dependence,’ _‘ ' ."‘:
must be that of '(16), regardless of the produotlon mechanism. i ’

- If W(0, ) is integrated over d(cos ), the Treiman-Yang. angular dlstu-

- We now turn to the questlon of the production mechanism and 1ts eonee i

_quences for decay distributions like (16). ‘We will restrict the discussion to a
boson resonance ploduced perlphera,lly by an incident pseudoscalar meson.
The relevant diagram is shown in Flg 4, where e represents an exchanged meson,f:

~ or more generally, the - channel states. It should be recalled that in the 1est_;”~

- (f1ame of the resonance ¢ the axes have been chosen so that the incident partlele a. |

and the -exchanged system e are 1nc1den1; along the z-axis and foun the reso-
* nance, as is shown in the lowe1 right- -hand part of F1g 4. R

For a J=1"resonance it is proved in ref. (%) that for 0~ exehange only goo g

is different from zero in, (16) a ‘well-known result, for natural parity exehanges
(1-,2% ...) only p,; and g, _; are d1f£e1en15 from zero, while f01 ‘unuatural parity .
ar, 2“ ..), all elements of g,,. are d1ft‘erent from zero in general. It Shouldy Tl

‘be: noted especially that 0,040 demamds the plesenee of unna,tula,l pa,nty*
V'States with J>1 in the ¢-channel. , o o o
' The dlseussmn of ref. (4)is based on. the plopeltles ef hehelty amphtudes

‘derivation which can be phlased so as to include - ' o; /,‘\'\e o
- consideration of resonances of higher spin. Suppose sl 9P Dogre

3 . e o
- that a resonant state of spin and parity J* isformed ~ ! \‘_/’ T

 from two systems of spin and parity 0~ (theincident iy 6, - Mnemonic dl&glam
- meson) and J7* (the exchanged system), with relative  for angular momentum and
‘orbital angular momentum I, as indicated in Fig. 6. ~ parify analysis - of the for-
Parity conservation limits the 1 values to being
even (odd)for PP, odd (even). Furthermore ‘mgular; meson and exchanged system' |
momentumn conservation restricts the values of I to ¢ angular momentum J
- the interyal |J— J|<l <J+J,. For J=1,2 and = and panty P,.
f0’< J, <3 the possible values of I are shown"" . B
in Table I. For J= 17 (1) the natural (unnatural) ,»pa,rity"states‘,‘ W1th T
P, = (—1)s((- —1) 1), have a single I value, | = Je. This is a decisive'faeterin
" eonsuieratlon of the density matrix. The densﬂ;y matrix is bilinear- in. the
amplitude for formation of the resonanee The’ amphtude for a resonant’ state

mation of a resonance Wlth'
spin J ‘and- parity P from 07 .

with J,= M will be proportmnal to the vector addltlon coefficient, (J 1M, 0| M pR  ': i

It is hardly neeessary to mention that if J> Je, only amphtudes with - IM ]< J; o

8705




e QMo

do b

Wi i occur, mth a oonsequent lumtatlon on the number of nonvamshmg ele—»ik.
I_nents O ‘But consider in partleula,r the a,mphtude for M=0. It is propor-
tlonal to (J ZOO ]JO), Whleh ig well known to vanigh unless J, —H—}-J is even.

— P
TABLE I - Values of orbital cmgulm" momentum l 'when a 0~ meson (md a system J,°
; : : form.a resonance JT. ‘ :

e

; Jle
| 05‘ 1 0" 1+ S T o R s o 3t | 3~
e o =1 oz L3 |2 3 2,4
. 1— =11 |z 2 1,3 2, 4 3
| oer __ 2 1,3 | 2 1,3 | 02,4 | 1,3,5 2,4
. 2— 2 —-— 2 . 1,3 | 0,2?4 1,3 | 2,4 | 1,35 |

iFor many of the eomb1nat10ns 1n Table I there will therefme be va,mshmg ‘
= amphtudes for M = 0. For example, when J=1 those sequences of exchan-
ged systems with J,=1, will give rise to vamshmg density matrix elements
I Whlle for the other exchanged states all g, will occur in general. We have :
thus derived the results of ref. (*) quoted above. . ' ‘ _
By the same a,rgument we see that for a J= 2" resonance (f-meson) pséu— |
ﬂdoscalar excha,nge will glve only 04 different from zero, while vector-meson
" exchange will give only 011 ! and 011 nonva.mshmg, and natural parlty excha,nges‘

L (1‘ oF 3" ) Wﬂl a,lways give QMO'—O: | M|=0,1, 2.

fe Aetua]ly the f-meson warrants some oomments in view of the recent mtelest v
?_‘,1n an. unamblguous spin - determmatlon (21). For a J=2 resonance decaymg B
"”}111130 two spmless bosons the general decay a,ngular dlstnbutlon is ()

‘ (17) : W (6, ) = {3900(003 b— ) - 4@11 sin 0 0082 0 -+ 22 s1n46 -+

| . —2co08 (p sin 26) [Re 0s1 sm2 0 + \/-Re 010(CO82 0 — %)] —
—2 cos 2¢ sm2 0201 cos? 0 — \/_Re 020(c0O82 0 6— _1,5)] +
+ 2 Re Qa —1 COS. 3(p sin? 0 sin 26 + Qz — cos 4g sin* 0} .

e

(24) Y. Y. LEE B P.. RQE D. SINCLAIR and J. C VANDER VELDE: Phys Rev
,_”Lett 12 342 (1964) . ‘

- “,,-;
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16 REMARKS ON THE PHENOMENOLOGICAL ANALYSIS OF RESONANCES ©  [1659]
- When this distribution is integrated over ¢ it simplifies to '

TR

18) sz(G, p)dp = —8—5— [39;,0((3052 0 — %)® -+ 40,:5in20 0820 + g 8int 6] . -

o Fmthermore, if one assumes that only pseudosealer and veetm exehanges aJre
responsﬂ)le, (7). reduces to *

(1'9‘)’ ' W2(97 <p) {Sgoo(oos 6 - —) + 4 8in%6 oos2 6(911 01,1 COS 2q))}

,Wlﬂl an integral over a,zmluth that involves only the firgt two terms in (18)
In ref. (*¢) only the gy, term was kept in (17) (el’ﬁhough some s-wave 1nter- ; ;
ference was ‘included) since the ta,(nt assumption of pion exehange was made.
While there do not seem to be any vector mesons of the right quentum numbe1 8
- (I'=1, G = —1) known at present, it should ‘be kept in mind that the genera,l»;“;_
- 0- dependence of decay of a J=2 resonance is given by (18), and thet some
‘amount of Qn is posmble even if p,, is hkely to be very smell

‘8. — Inclusion of nonresonant interference terms in the deeay 'cor‘relatio_ns. SR

The discussion so far has been ba,sed on the assumpt1on of produotlon by
, 1n01dent pseudoscalar mesons of a pure resonance, that is, a stete with only"
E ~one anguler momentum and pa;nty For the p and K* mesons it is known'
that this is not an adequate description (?%2), Slgmﬁea,nt 1nterferenee eﬂ:’eots,
not present in (16), are observed above and below the resonance. We wish to -
" pomt out tha,t to the extent that such states are formed in peripheral co]J1s1ons
1nv01v1ng only pseudoscalar end vector meson exchanges, the nonresonent
effects can be incorporated at least approximately in the usual menner by
use of the elastic scattering cross-section to describe the 0 exehenge (For
- vector exehenge, however, we negleet nonresonent effects.) The reason’ thet
- this is posmble is the lack of eoherenee between 0~ and 1~ exehange The 0“'**
‘' meson gives only amplitudes Wlth M =0, Whﬂe the 17 meson only popu—
lates M= 4-1 states. = SRR e

~ If the decay dlstmbntlon is genelahzed to be a funetlon of , as Well as the
. angles, end we use the Chew- LOW pole app1ox1matlon, eorreoted by (15)

, (25) SACLAY-ORSAY- BARI- Boroana COLLABORATION Nauovo Ozmento 25 365 (1962)
(25) S. WOJCICKI Phys Rev 135 B 484 (1964) ‘ ' !
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I

; -'1, VhaNe ‘2 generahzatlon of the 900 term in W(g’ (p) to the form »-‘ R

o) 2 +

]Pl eos@ | QOD

N Qoo (q") ;@2 (21 +1) ,(gﬁ)lexp [M,] sin’cSlPl(eos 6) I ,' ‘
| (°l+1)4n2wof pee) @' \a) - Eanidabitne S I

s ‘where the resonant fact01 has been n01mahzed apprommately to unlty on inte-
f-"»gra,tmn over do? (aceurate in the limit of a narrow resonance). For g, and
[‘91 1 sumla,r resonant shapes will occur. Equatlon (20) has been written in
- anticipation of the inclusion of nonresonant amphtudes The factor in (20)

whose absolute square ig taken is just one term in the partial-wave expansmn

; ’fﬁy,j-iof the seatterm amplitude, corrected aecordmg to (15) for off-the-mass- -shell

: < _~ "effeets The interference effects can be 1ncorp0rated by 1nsert1ng the full seat— :
e .;‘terlng amplltude (a,etua,lly q tlmes 113) '

i 21) o : | C f(e) s ZO(QL + 1)(2;3) er? [@61;] s‘in'(SLPL(:cos:f)) ;

,A' f";_mto (20) in plaee of the single term, L';l In Writin’g (21) we have assumed

* that the off- -mass- shell eorreetlon (15) holds for nonresonant, as well as resonant,

i fpartml waives.:

e the pseudosealar exehange “ferm 1nvolv1ng 0o Can

. Equation (20), wrth ( ) mserted is. Just the Chew-Low  cross-section,”
: f:?'{oorrected roughly for off-the-mass-shell effects. But the point is that, to the
- extent the veetor exehange part does not h,ave mgmﬁeant mterferenee effects,
- ' treated in a semi-rigorous
‘ ”manner, ‘independently of the presence of appraemble vector exehange .
W0301ck1’s data (%) on K* produetlon in K™p collisions at (1.5-+-1.7) GeV/e,

_for example, can be interpreted as due to roughly equal amounts ‘of vector

i meson and plon exchange, even. though there is a nonresonant s-wave contri-

‘b'lltl()ll to the pion exchange which is large enough to give a sizeable forward— :

baekward asymmetry in 0 that ehanges sign from below to above the resonance.
i Tt should perhaps be stressed that these remarks on the inclusion of non-’
."resona,nt effects for boson resonances apply only to a mixture of 0~ and natural

f}';‘j,ﬂipa,rlty states occur (as ev1deneed b'y a lalge 8in 26 cos @ berm in (16), for ex-
i ;;,a,mple) ‘these contributions can interfere with the 0~ exehange amp11tudes and
E f_eause departures from (20) a,nd ( )

() Note thafc if only nonresonant s-wave and resonant p -wave sea,ttenng is con-

i v,;k"v“_sudered the neglect of interference effects in.the vector meson exchange is not an -
- - approximation since the vector meson exchange cannot contrlbute to the s-wave part

o of . the amplltude

6708

* parity states in the ¢-channel. It appreelable contributions from unnatural |



. regpectively. For these spm— ‘decays there. is some arbltrarlness in the resul
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“for conversations on the experlmenta,l aspects of the productlon of resonanees,
and K. GorTrrIED and H. PILKUHN for dlseussmns on the ‘theory. ‘He mshes,
- to acknowledge the kind hospltahty of OERN durmg hls sta,y ' S

"APPENDIX A

Ehergy-—dependenee of -widths.

, We collect here some results for the eneuzy vana,tron of I'(co) for two-body;
: deeays The expre%smns will be Wntten in the fmm ' : A

\

: ‘(A-l)i .’ C T(w) :R‘(g_)“ﬂ Q(co)v
‘ '\j” . . ot ' 0

H

2

W@(wo) T |

where ¢, » and I are the 3-momentum of eeeh partlcle, the total energy, and

relative orbital angular momentum, 1 is the Wldth at w=w,, and Q(w) 1S~j .
a 1e1at1vely slowly varying factor , SRS

i 1Iworetwal widths. — The foHow1ng results f01 Q( ) are found from lowest-‘,
order perturbation theory.. ‘There is. therefore the. possibility (even necessity).
~of the presence of a vertex form factor with uncalculable energy variatioy

‘Such a factor can be thought ‘of as accounting for the difference between the
- theoretical and the empnlcal expressions for g(w). The angular momentumv
, end pau‘ry of the partmles 1s denoted by JP t o o

'<A.9> )0 1=1, @'<w)=cvf1" |

(A3 W) EI) =1, d@=w, -
(A4 @0 1=1, e(m)-‘(w-Jr e
a5 (%f>f>(o¥>(%+) =2, oo -—[w+M —mﬂ-

In (A.4) amd (;A 5), M and m are the masses of the. spm 3t and 0- partlcles

- because of arbitrariness in the. pos1t1ve energy progeetmn operator. The desenp
tion used for the epm- partleles is that gwen in Append1x B of ref. ( )

: ,Empmcal a.ozdths.
A6 Xt (1988): 39 > (0)FY) o) =[ami+ T, -

TN
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'his. ‘fonn of g(cu) is taken flom nuelear 1eaet10m theory (27) - Anderson’ s
'ELL MANN and WATSON (20). choose w~1 3, FON 116 MeV

5 1 9;_(750)‘:‘, (1~)—>{o—)(0*)‘; ,‘ | )-—[qﬁﬁ‘1

‘.Bczryom'c resondmes’: ‘ Q(O) :% a)“l[X 2+ q At

thele 118 ’rhe elbltal angula,r momentum of deeay ’]_‘hls form is- employed

~ by GrAsHOW and ROSENFELD (*) in fitting baayomc resonances in the context
Sy of unitary symmetry. They use X =350 MeV.

Use of the empirical forms for o(w) tends to make the Wldth vary less‘i'
rapldly with energy than (9) Consequently the ghifts in pemk posmon will

: . ‘n ot be qmte as 1arge as glven by (10) for the Same F

APPEi\IDIX B -

' ":ijiticiSm of the“ off-the-mdssAShell corre‘ctien of ’Ferr‘ari and Selleri.

he modifications of the partial-wave: amphtudes for pion-nucleon scattering
‘when the incident pion is off the mass- shell. For the dominant (3,3) ampli-
~ tude. they Obtaxned in addition to the squa1e root of (13) ! multipli_ea,tiVe
b A*‘correetmn faet01 CoE

: 14 3

- my (2]
jwhere oco (A + u? /Zm wo— m) Here m, M, w, are the masses of the nucleon,
the pion, and the (3, 3) resonance, respectively, while — A2 is the square. of
?_the «mass » of the incident pion. Numerleally, oy~ 1.9(4% + 0.02), where A2
8 in (GeVje): For A2= 0.5, the factor (B.1) is approximately 0.5; it decreases ,
rapidly for larger A“, pwwdmg a strong -damping for large A°. '

‘Sel'lerl S eq (65) for their: amphtude g(u, AZ) (g is the ofE shell (3 3) amphtude, ,

o (2") J. M. BLaTT andV P WEISSKOPF Theoretwal Nuclear Physws (NeW York 1952)
p.-‘ 332-333, 361.

o) HLL. ANDDRSON Proc. 6- th A'rmual Rochester C’onferenoe on: Hzgh E’nergy Nuclem '
. Phszs (1956) p. I-20. e o :

S () M. GELrL-Mawy and K. M. WATSON Ann Rew. of Nucl. ;S'cz 4, 219 (1954)
30),,s L GLASHOW and A. H. ROSENFELD: Phys Rev. Lett., 10, 192 (1963).
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(28 to the (3 3) phese shift leads, thlough (7), to @ = 2.2 and I ~123 MeV o

Thls eh01ee is made by SELLERI (20) Its main v1rtue is that ther s
;,energy dependenee of the Wldth (A1) is umquely determmed by the resonance R

. FERRARI and SELLERI (%), usmg d1s1oers1on relat1on teehmques, considered RN

- To be more precise, the. correetlon\ faetor (B 1) comes from Ferrari and =



' ';Wﬂ;h the correetlon faotor ‘eorr espondmg to (13) aheadv extlacted)

- " coefficient of cos ¢ vanishes at resonance ‘and ‘so does cos 4. -

o We wish to show that an alternatlve method of golution leads to the conclusmnﬁ

little appl oxmmtlon The alternatlve expressmn for ‘the solutlon is fmmdt

©20- REMARKS ON THE PHENOMENOLOGIC‘AL ANALYSIS OF RESONANCES

14 3% Snd  A(148« 14sm\ 1
Q )OML”“

(BZ) : (A2 exp [’“5] [ %) q3 | 14 oc)3 1+ o)

Whe1e o= (AEs +,u /2m w— m), U ~;(a) —m /m, l 4f2/3m,u ) and 6 is the (3, 3)'_,1

phase shift.  K(A?) is a vertex form factor. For simplicity we will omit.it
- from now.on. It can be included in a trivial fashion, if desired, but its pre--'f :

~ sence encumbers the formulae. The first term of (B. 2) domlnafses, giving

~ the factor (B.1). The second term is very small near resonance. because the:

 The result (B.2) arises from an. apprommate solution of a smgulal 1ntegral»"1
\equatlon [Ferrari and -Selleri’s (61)] of the Muskhelishvili-Omnés ‘type.

that (B.1) should be replaced by umty, leaving (13) as the ‘proper off-the-mass
shell correction for N* pr oduction, and to indicate the probable source of enor :
in the derivation of (B. 2) by FERRARI and SELLERI.

The integral equation to be. solved is a statlc limit approxnnatlon to a '

V ﬁxed A2 dispersion relaﬂ;lon

,exp [~ 7,5 ]smé( )

®3) g m+ f

u—u—~za ‘g(v“'),’_
. 'ylm
Wi‘t:»h» S
N T o dulw u -+ 3f)
(B.%) S .“l};:’(u)_ M—I—ﬁ

and B = (42 + p?)/2m:2. The phase Shlft 6 is assumed to be knovvn The amph-
- tude g(u ). is a function of A2i(as'a pa,rameter) on-the mass shell corlespondq ;
f to ﬂ_ 0. The direct Muskhehshlmh Omnes solution of (B. 3) iy Lo

o - | ot .Q() ,exp[zé ]smé( ‘)B(u’) ” v S
BB .“szW”‘n.f W—u—iQw)
Lol C : : : nlm ! ‘ . A . .
~ where | L
‘ (356) Lo T L(u) = exp [E fd%;_%ﬁ] .
: ’ SRR ) ulm T '

(B.b) is essentlally Ferrari and %11611 8 eq. (52) the phase functlon (B 6);‘
‘differs from theirs by the presence: of an ‘explicit phase factor exp[id]. -

- FERRARI and SELLERI dislike (B.5) as a solution because it involves - the,
- function Q(u) and’demands numerical integration to obtain glu). They thele-
fore proceed to obtain their approximate result (B.2). But we wish to cast (B. 5)
into an alternative form from which a solution can be found easﬂy and with
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';;,m the authm’s Edmburgh 1ect11les (31), in partmuleu, eq (A.27) on P 59. .
;f‘_‘fﬁ_For the present ploblem this form is R : Lo
i (B7) ST ,g(u)—~_§7‘m7/du (u’—u—ia).Q(u’)’ .
o L . . 03 N

.‘»~‘whe1e 0, is a contour (shown in Fig. 7 of ref. (31)) around the'singularities
of B(u) only, rather than along the physical cut, as in (B.5). The only singu-

]a,rl'by of B( w) is a pole of order 3 at u=—f (*). Thus (B.7) can be written

" where.

Q (u) A2f(u)

',?<B’,-._8>, L gw=

. 2 duklz ’ u'=—8 ’
17‘~(B§9)' o R flu') = — A W' 36)

(' —u— i) Q2(u')

In order to evaluate the derivative in (B.8) we must know Q(u'). Since

~ the point w'=—p is removed from the position of the resonance, w'— u,,
- it is permissible to use an approximation for Q(u') which neglects the Wldth
. of the resonarice. Thus we use o(x )~—n@(w-—u0) and obtain (*) ‘

RRCEUNE wauoiu% eixfz[-—ait%;)]

~ With (B.10) in (B.9), the result for (B.8) is

/u(u + 30)

(B'n); . g(u) ~ 2Q(u) { W By

- u)] -

i To cast this in a form for companson with (B 2) we can use the knowledge

. that 1n the physical limit ﬁ 0, g(u) —exp [8] sin /¢®. Thus
AQ(M)‘Q:TO R eX] [7,6] sin 5/!13 (***)

 ‘( 1) J. D. JACKSON: contribution to Dzsperszon Relamons ed. G R SCREATON

K (London, 1961).

(") Since, in the static model the important range-of v is assumed much less than
- unity, meaningful results can beexpected only for values of A2 such that p<l
(**) We have actually used a subtracted form of (B.6) to get (B.10). Since 2(u)/Q2(u')

: ,"'always enters, the presence of a multiplicative constant in “Q(u) ddes not maitter.

Tt should be remarked here that (B.10), because of the approximation involved in

- its derivation, not only fails to hold very near the resonance, but also for large |u].

The asymptotm behavior of Q(u) depends on the form of 6(%) at infinity; a cut-off
is needed to give meaning to the“static model.

7. (**") This connection between Q(u) and the scattering amplitude has been remarked

3. D. JAG’KSON,“,V e g e

o 'upon elsewhere (32), in a companson of dispersion theoretic and Watson’s (15) treatmentsv o
. of final state interactions.

e (32‘) J. D. JACKSO‘\( Nuovo Cimento, 25, 1038 (1962).
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’ (13313)

R
i

[1665] -

and (B.11) can be writben o *; i |

u—l—ﬁ

. ‘q3‘

An alternative method is to obselve that with the eﬁevtwe-range appromma,tlon‘ o
for the phase shift, /"tq'f‘ ctg 6 RS Uy — Uy ; ‘

exp[id]sin 6 o A
¢ Ty — u—iAg®

~ Comparison with (B.10) shows that 2Q(u) ~ exp['ié]k sind/g?, and (B.12) @é‘ain;f'--f =
. is obtained, apart from the factor u/u0 ~ 1. The effective-range formula
- allows (B 12) to be written ﬁnally as P Lo

(B.14) B N g(u) A/ eXp [ié]g—o [F%lé—é —!— . ((113;) cos 6]

This can be compared directly with (B.2) and shows that we find a corr‘ectionv B

" factor of essentially unity, rather than the Ferrari-Selleri result. (B.1). ST
In order to understand the origin of the difference between (B.14) and (B 2) i
“it is necessary to examine the derivation of (B.2) by FERRARI and SELLERT =
- They begin with (B.5) and exploit the fact that, in the limit § — 0 the solu-' -

tion for g(u) is known. Thus they write the mbegral in (B b) a

@©

v . : ,eXp"[ié(ul)] gin 6(@’) 14+ 306’ ’ ‘
(B.l?) ) f—-‘/d’w (u,_’_ " — w)Q(ul) [(1 T oc’)3] {B(u ‘)}ﬂfé :

plm

Here the f&ctor [(14+ 3o )/(1+oc )3]is just B(u')/{B(u')} p-o. Then they ‘argué i

- that the integrand peaks at u'=u, and factor out the SQuare—bmcketed O_luan-,, el
=_t1ty, obtaining (their eq. (63)): St

Gy et

"™

T 14301 [ explid(u)] sin o .,
(B.16) | f~ [(1+a0)] fdu, W —u—ic) A {B w')} peo .
) ) ) plm . V

_Since the integral remaining is on the mass shell, it can be readﬂy related to L

the physical scattering amplitude and (B.2) follows

If the step from (B.15) to (B.16) is justified then there is an unexplamed b
dlscrepancy ‘between (B.14) and (B.2). We now wish to indicate that the inte-
grand in (B.15) does not peak around u'=u, (even though that in" (B. 3)}'«‘.' s
does), and that the Step from (B.15) to-(B.16) is unwarranted. The. pomt dglvin
that the factor Q(u') in the dominator of (B. 15) becomes very large near
~resonance and compensates for the increase in sin § there. This can be seen‘
from the gharp resonance approximation (B.10) and (B.13). The supposedly,fjﬁ_"*“
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'\’
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resonant fa,ctor 111 (B 15) is- a,ctually in this applommamon -

eXP[WB(% )]smé )N : I ] .—'u|
Q(’"/) - A (ug— )t F2/4 o

where I'=22¢® is the width of the resonance, Numerical calculations with
- realistic phase shifts corresponding to finite, momentum-dependent’ widths

-verify the essential constauncy of the left-hand suie of (B.17) over a wide range

~-. of energies including the resonance.

. From the mathematical point of view, the solution (B.5) of (B.3) can be, :
a,ugmented by adding P(u) 2(u), where P(u) is an arbltmry polynormal in u.
Since ©2(u) ~exp[id] sin 6/¢g®> for a sharp resonance, it is clear that in' this

R lumtan arbitrary off-the-mass-shell correction in /2 can be obtained. This
-~ can be traced to the dominance of the integral in (B.3), relative to the inhomo-

- geneous term B(u), in the neighbourhood of the resonance. But the basic

philosophy here (and in ref. (2 )) is to omib such added solutlons of the homo-
'.,geneou% equation. . :

' .

5 fk',':iiﬁylk‘fNote added in prooj'

Resona,nt factors more or less equivalent to (4) and (8) have been familiar for a '
: long time in low-energy nuclear physics. See, for example, C. W. COOK, W. A. FOWLER,

. C. C. Laurirsen and T. LAURITSEN  Phys. Re'v 111, 567 (1958); T. A, GRIFFY‘ and
L. C. BieDENHARN: Nucl. Phys., 15, 636 (1960) and unpublished manuseript; G. C.
, - PairLips, T. A. Grirry and L. C. BIEDENHARN: Nucl. Phys., 21, 327 (1960). 'The author. . -
-+ 'thanks Prof. BIEDENHARN for bringing these references to his attention.

RIASSUNTO (*)

- Si fa,nno alcune osservazioni su vari aspetti dell’analisi delle risonanze prodotte ‘

= negh stati finali di molte particelle risultanti da collisioni di alta energia. Si discutono
. la forma e la. posizione di una risonanza per mezzo della connessione fra le sez10n1'
; fyefﬁcacl di produzmne per le particelle stabili e quelle instabili, e si di un esempio nume-
" rico dell'N* come si vede in KN — KN* a differenti energie. Si analizza il rapporto
- fra questa descrizione degli effetti di risonanza ed altre (la formula di Watson per le
S ,mterazmnl dello stato finale e il modello a scambio di un mesone di Chew e Low). Si
L ottengono in modo relativamente semplice le correzioni fuori lo strato delle masse al
- ~modello a scambio di un-mesone. Si analizza Pinfluenza delle correlazioni angolari del

decadlmento sul meccanismo di produzione; si definiscono gli assi coordinati appro-
~7.‘pr1at1 al modello periferico; si afferma l'equivalenza della distribuzione angolare azi-

 mutale con la dlstrlbuzmne di Treiman-Yang. Si danno le correlazioni  angolari per il

- decadimento di risonanze bosoniche (J=1, 2) risultanti da stati .con spin e parlta

- definite nel canale ¢. Si fanno alcune osservazioni sull’inclusione di contributi non riso-
- nanti- quando si ha una mescolanza di scambio pseudoscalare e vettoriale.

) Traduzione a cura della Redazione.
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